In-Situ TEM Study of the Thickness Impact on the Crystallization Features of a Near Equal-Atomic TiNi Thin Film Prepared by Planar Magnetron Sputtering

نویسندگان

  • Xiaodong Han
  • Shengcheng Mao
  • Qun Wei
  • YueFei Zhang
  • Ze Zhang
چکیده

In-situ TEM studies were conducted to reveal the crystallization features of equi-atomic TiNi amorphous thin films. The TiNi amorphous thin film crystallization procedure can be divided to be two types: the in-homogenous nucleation and growth mode in the ultra thin regions and the homogenous polymorphous mode in the thick areas. In the thin regions, the thickness controls the in-homogenous nucleation mode. The formed nano-crystallites in the thin areas are with a size of 5–20 nm while in the homogenous nucleation and growth mode, the grain size drops to the range of sub-micron level. In general, the stabilized grain size is a function of thin film thickness and can be described as G 1⁄4 kx, where x is the thickness in nano-meter and k is a constant related to lattice parameter. An intermediate phase forms through the crystallization procedure in the thick region. The intermediate phase possesses a cubic structure with lattice parameter of a 1⁄4 9:03A. The intermediate phase transforms to the stable B2 phase when the specimen being kept above the crystallization temperature for some time. The crystallization sequence in the thick region is determined to be: TiNi amorphous ! intermediate phase ! B2 + Ti3Ni4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Thickness on Properties of Copper Thin Films Growth on Glass by DC Planar Magnetron Sputtering

Copper thin films with nano-scale structure have numerous applications in modern technology.  In this work, Cu thin films with different thicknesses from 50–220 nm have been deposited on glass substrate by DC magnetron sputtering technique at room temperature in pure Ar gas. The sputtering time was considered in 4, 8, 12 and 16 min, respectively. The thickness effect on the structural, mo...

متن کامل

The Effect of Substrate on Structural and Electrical Properties of Cu3N Thin Film by DC Reactive Magnetron Sputtering

The aim of this paper is to study the effect of substrate on the Cu3N thin films. At first Cu3N thin films are prepared using DC magnetron sputtering system. Then structural properties, surface roughness, and electrical resistance are studied using X-ray diffraction (XRD), the atomic force microscope (AFM) and four-point probe techniques respectively. Finally, the results are investigated and c...

متن کامل

Mechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering

Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...

متن کامل

Residual Stress of TiNi Shape Memory Alloy Thin Films with (111) Single-crystal Silicon Wafer

As micro-actuator materials, TiNi shape memory alloy thin films with substrate are used more and more in MEMS field. The residual stress in Ti-rich TiNi thin films with silicon substrate prepared by the magnetron-sputtering technique is measured by both X-ray glancing and contour method. The influence of crystallization annealing temperature and film thickness on the residual stress is tested. ...

متن کامل

Effect of Thickness on Structural and Morphological Properties of AlN Films Prepared Using Single Ion Beam Sputtering

Aluminum nitride (AlN) thin films have potential applications in microelectronic and optoelectronic devices. In this study, AlN thin films with different thicknesses were deposited on silicon substrate by single ion beam sputtering method. The X-ray diffraction (XRD) spectra revealed that the structure of films with thickness of - nm was amorphous, while the polycrystalline hexagonal AlN with a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006